
Docker Bridge Networks and Host Service Accessibility:

A Deep Dive into Container Networking Isolation

Abdallah Abouabdallah

January 2026

Abstract

This article documents a practical networking challenge encountered while deploying
pgAdmin in a Docker container to manage a PostgreSQL database accessible only through
an SSH reverse tunnel. We explore Docker’s bridge network isolation mechanisms, the lim-
itations of host-gateway resolution, and why containers cannot connect to services bound
to their bridge gateway IP. The investigation reveals fundamental Docker networking design
decisions and presents alternative architectural solutions.

1 Introduction

Modern infrastructure often involves multiple layers of network abstraction: Docker networks,
SSH tunnels, reverse proxies, and firewall restrictions. When these layers interact unexpectedly,
debugging requires understanding each component’s behavior in isolation and in combination.

1.1 The Objective

Deploy pgAdmin (a PostgreSQL management interface) on a VPS to manage a PostgreSQL
database running on a remote workstation. The workstation resides on a corporate network
with strict egress policies, requiring all remote access to be established through secure, encrypted
channels.

1.2 The Network Environment

The workstation’s network enforces TLS-only outbound connections on standard ports. To
maintain secure remote access while complying with network policies, we use stunnel—an
SSL/TLS tunneling proxy that provides encrypted communication channels. This is a common
enterprise pattern for secure remote administration.

2 Architecture Overview

3 The Problem

The SSH reverse tunnel successfully forwards PostgreSQL traffic and binds to 172.19.0.1:5432
on the VPS (the gateway IP of the Docker traefik default network). From the VPS host, the
connection works:

# From VPS host - SUCCESS

$ nc -zv 172.19.0.1 5432

Connection to 172.19.0.1 5432 port [tcp/postgresql] succeeded!

$ psql -h 172.19.0.1 -U abdallah -d postgres

# Connected successfully

1



Secure Tunnel Layer

PostgreSQL
127.0.0.1:5432

Stunnel Client
TLS Encryption

Internet (TLS/443)

Stunnel Server
TLS Termination

SSHD
Reverse Tunnel

Tunnel Endpoint
172.19.0.1:5432

pgAdmin Container
172.19.0.5

BLOCKED

Workstation

VPS

Figure 1: Network architecture showing the blocked connection. The secure tunnel layer is
detailed in a separate article.

However, from inside the pgAdmin container:

# From pgAdmin container - FAILURE

$ nc -zv 172.19.0.1 5432 -w 3

nc: 172.19.0.1 (172.19.0.1:5432): Operation timed out

4 Investigation

4.1 Understanding Docker Bridge Networks

Docker bridge networks create isolated network segments. Each bridge network has:

• A subnet (e.g., 172.19.0.0/16)

• A gateway IP (e.g., 172.19.0.1) — this is the host’s interface to the bridge

• Container IPs assigned from the subnet (e.g., 172.19.0.5)

2

https://yoursite.com/stunnel-article
https://yoursite.com/stunnel-article


4.2 The Gateway Misconception

The gateway IP (172.19.0.1) is not a general-purpose entry point to host services. It exists
primarily for:

1. Outbound NAT (containers accessing the internet)

2. Docker’s internal DNS resolution

3. Inter-container routing

While Docker doesn’t explicitly block container→gateway connections, the interaction be-
tween several layers creates this behavior:

• SSH tunnel binding semantics: How sshd binds reverse tunnels to specific interfaces

• Network namespace routing: Packets from containers traverse different routing paths
than host-originated packets

• Host firewall rules: UFW, nftables, or VPS-level filtering may affect traffic patterns

The result is that services bound to the gateway IP from the host’s perspective may not be
reachable from containers, even though they appear to be on the same subnet.

4.3 The host-gateway Special Value

Docker provides host-gateway as a special DNS value:

extra_hosts:

- "host.docker.internal:host -gateway"

This is a design simplification: host-gateway always resolves to 172.17.0.1 (the default
bridge gateway), regardless of which network the container is attached to. For containers on
custom networks like traefik default, this creates a mismatch:

# Inside container on traefik_default (172.19.0.0/16)

$ cat /etc/hosts | grep host.docker

172.17.0.1 host.docker.internal # Wrong network!

5 Attempted Solutions

5.1 Approach 1: Direct Gateway Connection

Bind the SSH tunnel to the Docker gateway IP and have containers connect directly.

pgAdmin
172.19.0.5

Gateway
172.19.0.1:5432

SSH Tunnel
X

Result: Failed. The SSH tunnel bound to the gateway IP is not reachable from within the
container’s network namespace.

5.2 Approach 2: Socat Bridge with host-gateway

Use a socat container with host-gateway to bridge traffic to the host.

pgAdmin
172.19.0.5

socat
host-gateway

172.17.0.1
(wrong!)

172.19.0.1

X

Result: Failed. host-gateway resolves to default bridge (172.17.0.1), not our network’s
gateway (172.19.0.1).

3



5.3 Approach 3: Dual Socat Bridge

Chain two socat instances: one in host network mode, one in the Docker network.

pgAdmin
172.19.0.5

socat-internal
172.19.0.6

socat-host
(host network)

Tunnel
172.19.0.1

X

Result: Failed. socat-internal still can’t reach socat-host via gateway IP—same isolation
issue.

5.4 Approach 4: Public IP Access

Have containers connect via the VPS’s public IP where socat listens.

pgAdmin
172.19.0.5

Public IP
194.x.x.x:5433

SSH Tunnel
127.0.0.1:5432

Exposes port to internet!

Result: Would work technically, but exposes PostgreSQL proxy to the public internet—
unacceptable security risk.

6 Working Solution

Run pgAdmin directly on the host (without Docker), connecting to 127.0.0.1:5432. Use
Traefik’s file provider or a reverse proxy configuration to route HTTPS traffic to the local
pgAdmin instance.

# pgAdmin connects directly to localhost

pgAdmin -> 127.0.0.1:5432 -> SSH Tunnel -> Albus PostgreSQL

This eliminates the Docker networking layer entirely for this specific service.

7 Key Takeaways

1. Gateway accessibility is not guaranteed: Services bound to Docker bridge gateway
IPs may not be reachable from containers due to network namespace routing and SSH
tunnel binding behavior.

2. host-gateway is a simplification: It always resolves to the default bridge gateway
(172.17.0.1), not the container’s actual network gateway—a design choice, not a security
feature.

3. SSH tunnel bind addresses matter: -R 127.0.0.1:5432 vs -R 0.0.0.0:5432 have
very different accessibility implications.

4. GatewayPorts in sshd config: Required for SSH tunnels to bind to non-localhost ad-
dresses.

5. Sometimes Docker isn’t the answer: For services requiring complex host networking,
native installation may be simpler.

4



8 Conclusion

This investigation revealed that the interaction between multiple networking layers—SSH reverse
tunnels, network namespaces, and Docker bridge networks—can create unexpected connectivity
challenges. The behavior emerged not from any single component’s design, but from how these
layers interact. The combination of SSH tunneling, TLS encryption, and Docker networking
created a multi-layer debugging challenge where each component worked correctly in isolation,
but their interaction produced the observed failure.

Understanding these boundaries helps inform better architectural decisions: not every service
benefits from containerization, especially when complex host networking is required.

5


	Introduction
	The Objective
	The Network Environment

	Architecture Overview
	The Problem
	Investigation
	Understanding Docker Bridge Networks
	The Gateway Misconception
	The host-gateway Special Value

	Attempted Solutions
	Approach 1: Direct Gateway Connection
	Approach 2: Socat Bridge with host-gateway
	Approach 3: Dual Socat Bridge
	Approach 4: Public IP Access

	Working Solution
	Key Takeaways
	Conclusion

